

Internet of Things Device Penetration Testing
Aimee True

Department of Computer Science
Colorado School of Mines

Golden, CO, USA
true@mymail.mines.edu

Andrew Harelson
Department of Computer Science

Colorado School of Mines
Golden, CO, USA

andrewharelson@mymail.mines.
edu

Bradley Helliwell
Department of Computer Science

Colorado School of Mines
Golden, CO, USA

bhelliwell@mymail.mines.edu

Thien Ngo Le
Department of Computer Science

Colorado School of Mines
Golden, CO, USA

thienngole@mymail.mines.edu

Abstract— Internet of Things, or IoT, is a trending phrase
in the world today. It refers to a system of internet-
connected devices that have the ability to exchange data.
These devices provide us with many advantages, such as
having smart homes and smart cities. However, the price of
having the conveniences offered by IoT devices is a potential
loss of security and privacy, as IoT devices suffer from a
wide range of security vulnerabilities. In this paper, we
describe an experimental project performed that analyzed
and reported found security vulnerabilities and potential
privacy issues in smart home systems. This experiment was
performed using a red versus blue team exercise, where we,
the red team, attempted to find and exploit vulnerabilities
while the blue team attempted to counteract us.

Keywords—IoT; smart home devices; red team;
vulnerabilities; security and privacy;

I. INTRODUCTION
Over the past several years, internet of things, or IoT,

devices have become increasingly popular. These internet-
connected devices have the ability to automatically collect and
exchange data with other devices and with users. These devices
are also characteristically easy to use and have a vast amount of
potential value. IoT devices can be used in larger capacities,
such as for large-scale transportation networks, or for more
every day, individual use. For individual users, IoT devices can
provide a wide variety of conveniences, often in the form of
smart home devices. Some examples of services that smart
home devices provide are scheduled keeping, health
monitoring, and home security. These IoT devices come in all
shapes and sizes, from smart speakers to smart vacuums to
smart grills.

However, despite the wide array of opportunities that
come with IoT devices, the devices also come with security and
privacy concerns. Malicious attacks that leverage the use of IoT
devices have already begun to occur. For example, the Mirai
Botnet DDoS attack occurred in 2016 and affected large parts
of the United States and Europe. With all these devices
connected to each other and the internet, there are concerns for
protecting user’s privacy and information. Part of the appeal of
IoT devices is the fact that they are constantly collecting and
storing information collected from users and their homes.
Intimate and private data can be collected and if that
information is not securely stored, attackers can easily capture
it. Privacy has always been a great concern in cybersecurity, but
IoT devices are especially concerning. For example, smart

cameras such as the Ring video doorbell records videos outside
of a user’s house. A dedicated attacker could gain access to
those videos and could use them to deduce the address of their
victim and use it to exploit them in a variety of different ways.

Despite these concerns, security measures for IoT
devices are not being implemented. One of the big reasons for
the lack of security is a desire to innovate quickly and minimize
costs. Due to the rising popularity of these devices, new types
and versions of devices are getting released almost every day.
Therefore, to gain competitive advantages, developers try and
get products out to the public as quickly as possible. As a result,
developers do not spend the time needed to ensure that their IoT
devices have effective security measures. Developers are not
required to implement these security measures due to a lack of
enforced security standards. In addition, implementing security
measures can be difficult due to the fact that IoT devices have
simple hardware.

The primary goal of this project was to learn about
vulnerabilities in IoT devices and demonstrate how they can be
implemented. This is done in an effort to help protect IoT
devices and prove that those security concerns are valid. We
researched different vulnerabilities and used them to perform
attacks on smart home devices in a realistic setting. Because we
are all novices in this field, we used vulnerabilities already
discovered by others. The real value in our work is
demonstrating that these vulnerabilities still exist and that non-
experts can perform these attacks. By finding vulnerabilities
that can be easily exploited by a beginner team, the devices can
be better secured and protected in the future.

II. APPROACH

A. Key Idea
To find flaws and vulnerabilities in IoT devices, and

determine how to fix those vulnerabilities, this experiment was
carried out in a blue team versus red team style fashion. The red
team—our team—focused on attacking the devices, whereas
the blue team focused on defense.

B. Experimental Setup
To perform this experiment, we set up a lab environment

with a dedicated Linksys router. The OpenWrt operating
system was installed on the router, which allowed for extensive
customization of the router. The setup also contained an
Android phone and an Ubuntu desktop computer. The computer
contained a number of tools installed upon it, including

VirtualBox through which a virtual machine of Kali Linux was
installed. Most importantly, a number of smart home devices
were set up in the lab. This list contained the following: an
indoor DropCam, Belkin WeMo smart switch, Amazon Echo,
Samsung SmartThings, Foscam R4, Lefun Camera, Withings
sleep monitor, Omron 7 series, Ring, August Smart Lock Pro,
Wemo smart plug, VOCOlinc PM2 Smart Power Strip,
Netmato weather station, Triby speaker, Nest Thermostat, and
Google Chromecast.

To allow the blue and red teams to function separately and
work as opponents, only one team had access to the lab space
at a time. The blue team would have time in the lab to create
defenses and then the red team would have time to perform
attacks. Our team documented both the attacks that we were
able to carry out and attacks that had the potential to be
successful, but that we were unable or unwilling to perform for
a variety of reasons. For more information on these limitations,
see Section 6.

III. ACTIVITIES
A number of different attacks were performed with a variety

of different tools in an attempt to find the vulnerabilities in
different IoT devices. This section will discuss some of those
attacks in detail and the effects that they can have.

A. Network Spying Using Airodump-ng and Airgraph-ng of
Aircrack-ng Suite
The more information about the target that can be gathered,

the greater the chance there is of an attack succeeding and a
vulnerability being exploited. Therefore, we began by
researching and performing espionage on the lab environment.
However, without access to the network, information about the
traffic going between devices cannot be collected and learned
from. One way to circumvent this issue is to sniff the WiFi radio
traffic and learn about the relationships between the different
devices on a network. Tools like airodump-ng, which is used
for packet capturing, helps to sniff this kind of traffic.
Unfortunately, the data collected by airodump-ng is not in a
human-friendly format. It essentially draws a map of the
relationships between the devices in a binary format. To be able
to convert this data into a graphical, human-readable format,
other tools like airgraph-ng were used. Airgraph-ng can be used
to produce two different kinds of graphs: graphs of access point
relationships and graphs of probe frames.

Two types of graphs were used to analyze the network.
Graphs of access point relationships (GAPR) are more
commonly known as connected devices graphs. They map
access points and all of the devices that are connected to those
access points. Graphs of probe frames (CPG) are also called
disconnected devices graphs. Those graphs show devices that
are not connected to any access points and all of the networks
that those devices have ever been connected to. To create either
GAPR or GPU graphs, a WiFi adapter that supports monitor
mode and that has an aircrack-ng suite installed are required.
Monitor mode is a data capture mode that allows for the
collection and monitoring of data that is received on a wireless
channel. Airgraph-ng, airodump-ng, and aireplay-ng are all part

of aircrack-ng, which is a complete suite of tools that assess
WiFi network security. Aircrack-ng can be used to monitor
packet capture and export the data to text files for further
processing, perform replay attacks, de-authentication, fake
access points, and more via packet injection, and crack WEP
and both WPA1 and WPA2 encryption. In this experiment, we
used the Alfa AWUS036ACH WiFi adapter and used the
airodump-ng and airgraph-ng script that is included in aircrack-
ng.

The procedure to perform network spying with these tools
is as follows:

1. Set WiFi adapter to monitor mode.

$ ifconfig wlan0 down

$ iwconfig wlan0 mode monitor

$ ifconfig wlan0 up

2. Capture surrounding network traffic using Airodump-ng.

 $ airodump-ng wlan0 -w IoT-Lab-captured-traffic

3. Generate a graph of devices that are connected to the access
point (CAPR Graph).

$ airgraph-ng -i ‘/root/Desktop/IoT-Lab-captured-
traffic-01.csv’ -o IoT-CAPR.png -g CAPR

4. Generate Graph of devices that are not connected to the
access point (CPG Graph).

$ airgraph-ng -i ‘/root/Desktop/IoT-Lab-captured-
traffic-01.csv’ -o IoT-CPG.png -g CPG

This procedure creates both a CAPR graph and a CPG
graph. Figure 1 shows the result produced from step 3, which is
the connected devices (CAPR) graph of our smart home lab. It
shows all devices that are connected to our smart home lab
network via the OpenWrt router, with all of their MAC
addresses and extra details about the devices if possible. Those
MAC addresses are blacked out on the graph in Figure 1 to
protect our privacy.

Figure 1: CAPR Graph of Smart Home Lab

Figure 2 shows a zoomed-in part of the graph from
Figure 1. In this part of the graph, airgraph-ng can inform us
that there is a Dropcam that is connected to the router called
OpenWrt, which is the smart home lab router, and it’s MAC
address is on channel 11. It also shows the MAC address of
the Dropcam itself. All of this information could potentially be
very valuable for hackers. Attackers could use this
information to do a lot of damage to these devices. Section 4.2
shows in detail one example of how this information could be
used to perform an attack.

Figure 2: CAPR Graph Dropcam Information

Figure 3 shows an example of the disconnected
devices (CPG) graph of our smart home lab. This graph shows
all of the devices with their respective MAC addresses that
surround the smart home lab, including those that are connected
to the lab’s router and those that are not. It also shows the name
of the networks that all those devices had in the past been
connected to. Again, like with Figure 1, the MAC addresses of
the devices are blacked out to protect our privacy. Attackers
could take advantage of this information by creating fake
mockups of those networks, tricking users to login, and then
stealing their credentials. We did not perform such attacks in
this experiment because we wanted to focus on attacks that
target technical flaws instead of social engineering attacks.

Figure 3: CPU Graph of Smart Home Lab

Zooming in on the CPU graph, as can be seen in Figure
4, it can be seen that there is an Apple product, probably an
iPhone, that is not currently connected to the smart home lab
router, OpenWrt. But that device has been connected to four
different networks: PVD Free WiFi, Hotel Albuquerque, _LAX
Free WiFi, and Hotel Cascada. This is a clear red flag for
protecting users’ privacy.

Figure 4: CPU Graph Apple Product Information

B. Disable Dropcam Security Camera Using De-
Authentication Attack
The information provided by airgraph-ng can be used to

perform a simple attack to disable a security camera. In our
experiments, a Dropcam IoT security camera was the attack
target. A de-authentication attack using the aireplay-ng script
included in the aircrack-ng suite can be used to perform this
attack. All that is required is a WiFi adapter that supports
monitor mode and a PC with the aircrack-ng suite installed, just
as is required to perform network spying.

The procedure to disable a Dropcam with these tools is as
follows:

1. Set WiFi adapter to monitor mode.

$ ifconfig wlan0 down

$ iwconfig wlan0 mode monitor

$ ifconfig wlan0 up

2. Identify the client device and its access point. In this
particular experiment, the client is the Dropcam with its MAC
address and its access point is the smart home lab router on
channel 11 with its MAC address.

3. Set WiFi adapter to the channel the two devices are on.

$ airmon-ng start wlan0 11

4. Perform the attack using the following command.

$ aireplay-ng -0 0 -a aa:aa:aa:aa:aa:aa -c
xx:xx:xx:xx:xx:xx wlan0

When the command is executed, it will jam the WiFi
connection between the router and the Dropcam by
continuously sending authentication packets masquerading as a
router with MAC address aa:aa:aa:aa:aa:aa. The results of this
attack can be seen in Figures 5 and 6. Figure 5 shows the output
from the Dropcam before the attack and Figure 6 shows the
output after the attack.

Figure 5: Dropcam Output Before Attack

Figure 6: Dropcam Output After Attack

C. Disable Wemo Smart Plug Using De-Authentication Attack
In this attack, the de-authentication technique was also used

to disable the client device from the access device. Assuming
that all of the necessary data is gathered, we can apply this same
procedure to attack the Wemo smart plug. The only difference
is that the target MAC address has to be changed to the Wemo’s
address. Figure 7 shows the Wemo status before our attack is
performed. At this moment, the Wemo smart plug is active and
the user can use the Wemo app on a smartphone to control the
smart plug. Figure 8 shows the status of the smart plug after
being attacked. The smart plug has been disconnected from the
control app and the user has completely lost control of the
Wemo smart plug.

Figure 7: Wemo Smart Plug Before Attack

Figure 8: Wemo Smart Plug After Attack

D. Disconnect Google Chromecast Using De-Authentication
Attack
In this attack, we again used the de-authentication technique

to disconnect the Google Chromecast in our smart home lab.
The Google Chromecast device used in this experiment is the
newest, third-generation Google Chromecast. The procedure is
entirely the same as with the Dropcam and the Wemo plug.
Again, the only thing we need to do is set the target MAC
address to the Chromecast’s address. Figure 9 shows a
YouTube video being cast to the Google Chromecast. Figure 10
and 11 show the result of our attack; we can see that the Google
Chromecast device is disconnected from the network and the
video is no longer being cast. Figure 11 shows that the Google
Chromecast is totally offline, which blocks users from casting
any new videos and it affects the usability and availability of
this device.

Figure 9: Google Chromecast Before Attack

Figure 10: Google Chromecast First Response After Being

Attacked

Figure 11: Google Chromecast After Attack

E. WPS Attack
Another attack that can be performed is a WPS attack. This

attack exploits a router convenience feature to gain access to
the network. WPS stands for WiFi Protected Setting; it is a
feature that allows individuals to use an 8-digit WPS pin
number that is printed on the router to login to the network. To
perform this attack, a WiFi adapter is again required that
supports monitor mode. The WiFi adapter must also work with
the Airgeddon script. Airgeddon is a multi-use bash script used
to audit wireless networks. It can be used to perform attacks
such as Pixie Dust attacks, Brute Force Pin attacks, WPS
attacks, and many more. The Alfa AWUS036NHA WiFi
adapter was used in this attack. For this attack, the WiFi adapter
had to be changed to Alfa AWUS036NHA instead of Alfa
AWUS036ACH, because the chipset of Alfa AWUS036ACH
is a newly Linux supported chipset, so its driver has not been
developed to be compatible with Airgeddon yet.

To perform this attack, the first step is to start the Airgeddon
script, select the WiFi adapter, and set it to be in monitor mode.
Next, the target needs to be found and set, which in this case is
a router that has the WPS feature enabled. Then, the attack
module is chosen, and the attack is performed. Because
Airgeddon has many different attack modules, the attacker
needs to explicitly choose which module they want to use. If
the attack succeeds, it will output the username and the
password to the network. We were able to successfully perform
this attack on a D-Link router on the home network of one of
our team members. However, it did not work with our smart
home lab router because the smart home lab router uses the
OpenWrt operating system that disables the WPS feature by
default. Despite this, WPS is a durable attack on many different
kinds of routers. Because of this, we need to pay attention to
our WPS settings because if someone can get access to your
network, they can do a lot more damage to the devices within
your network than was previously believed. In the next section,
another attack is described in detail which shows just how
simple it is to hijack any Google Chromecast device on a
network.

F. Google Chromecast Hijacking
The common weakness of IoT devices is that they normally

don’t have their own security layer. In most IoT devices, their
security relies on the network security layer. This is a very bad
security design approach. Therefore, attacking devices such as
Google Chromecast becomes super easy when attacker get
access to the network. In this attack, we hijacked a Google
Chromecast at our smart home lab using the Cast All The
Things (CATT) script. Thanks to tools that have been
developed specifically for attacking Google Chromecast
devices, such as CATT, hijacking this kind of device is very
easy. CATT is a free to use script that allows attackers to hijack
Google Chromecasts and display a variety of different media
that the user or owner of the Chromecast has not permitted to
be shown. Any operating system that has Python installed upon
it can be used to run a CATT script.

To hijack a Google Chromecast using the CATT script, the
general procedure is as follows:

1. Scan the network to find Chromecast devices

$ catt scan

2. Start casting thing to the device

2.1 Cast any online video:

$ catt cast <link to the online video>

2.2 Cast any website:

$ catt cast_site <link to the site>

2.3 Cast a local video

$ catt cast <path to the video file>

2.4 Cast a local video with added subtitles:

$ catt cast -s <path to subtitle file (.srt)> <path to the video
file>

Note that in case the network has multiple Google
Chromecast devices we can use -d option to specify a device
that we want to cast to.

Figure 12: CATT Screenshot

In Figure 12, we can see that the network has two Google
Chromecast devices that were found along with their IP
addresses: Bedroom and LivingRoom. The sample command
below will only cast things to the LivingRoom Google
Chromecast device:

$ catt -d LivingRoom cast <source video>

While innocent material could be cast to a Chromecast
device, malicious material could just as easily be displayed.
Harmful or sensitive videos could be cast to the device. In

addition, the subtitle functionality could be used to send or
display messages. Videos and messages could be used as a
means of propaganda or to harm in some fashion. However,
innocent or not, the user or owner of the Chromecast no longer
has control over their device, and this violates the availability
component of the CIA triad.

IV. ANALYSIS
The default username and password for a router can

easily be found and exploited by attackers. It is therefore
important for users to alter their router’s username and
password to something more secure. It is also important for
users to be aware of what kind of devices are connecting to their
network and in what ways those devices are connecting. For
example, when the Dropcam was connected to the network, its
title was simply “dropcam”. This could easily be exploited by
viewing the network. Once they know that the user is using a
Dropcam, they can use a Dropcam-specific attack and the
attackers are guaranteed to be able to disable the camera.
However, this could also be used to the user’s advantage. For
example, changing the name of a Dropcam to Amcrest Pro HD,
a rival camera, might convince attacks to use the wrong kind of
attack to disable the camera.

It is clear from the results found that IoT devices push
usability and convenience over security. The blue team
consisted of students who were familiar with tech, not the
average user. The average user doesn’t change default
passwords and so this is who are the experiments were
conducted against. The blue team, however, deployed some
security measures after we conducted our attacks to help
resolve the issues we found. This consisted of turning off the
WPS feature on the router, making their IPs static, whitelisting
their needed MAC addresses, segmenting their network,
installing a VPN, and setting up an intrusion detection system
(IDS) with Snort. If we were to attempt to conduct our attacks
again, we would have to change the way we attacked their
system. Due to the fact they disabled WPS on their router, we
would have to find a different way to gain access to the router
and their network. If we were unable to gain access, our attacks
on the IoT devices would consist of disabling rather than
gaining control. For example, our attacks on their Chromecast
device would not be possible because we weren’t inside the
network. We could instead create a de-authentication attack on
the Chromecast in hopes of disabling its features. The security
features implemented by the blue team did a good job of
warding off our attacks. It would be great if the average user
could employ these security features, but that is asking a lot
considering they require a decent amount of technical expertise.
At the very least, average users should make sure to change
default passwords, disable WPS on their router, and keep an eye
on their network device names to ensure they don’t give away
too much information.

Our lab setup currently has 4 WiFi devices that are
being using: Foscam R4, indoor DropCam, Wemo smart plug,
and Google Chromecast. We are able to disable 3 of them using
de-authentication technique. This clearly shows that WiFi

devices are very breakable. The disabling of these devices could
cause serious damage to the system in many different ways. For
example, by disabling the WiFi cameras in a house, an attacker
can bypass the physical security of the house. Losing control of
a smart plug could cause serious damage to other devices that
use the smart plug as their power source. Homeowner’s health
could be affected if they lost control of their smart plug and
could not turn on the heater during an extremely cold day.

V. LIMITATIONS
The biggest challenge and limitation for this

experiment was the fact that the router used was connected to
the Colorado School of Mines network. The network setup was
required to follow the school’s network security policies, and
this caused a number of different issues. Initially, there were
technical difficulties with getting the router up and running,
which caused delays in getting started. Beyond that, there are
also a number of restrictions as to what can be done on the
Mines network. The Mines network is much more protected and
secure than an average home environment where many IoT
devices can be found. Many tools and attacks that we wanted to
use could have been performed on a normal home network but
were impossible on the Mines network. For example, the IT
department (ITS) restricts certain types of traffic like ICMP
when it comes from an internal router. In addition, since our
router was connected to the Mines network, we were hesitant
and at times unwilling to perform certain kinds of attacks that
had the potential to go beyond the lab and into the overall
network.

Another big challenge had to do with scheduling.
Initially, we planned to alternate each team’s access to the lab
every week. However, splitting up the lab time between the red
and blue teams like this made it difficult for each team to be
able to accomplish their goals in a timely manner. Therefore,
about halfway through the experiment, it was decided that the
lab space and time would be shared and either team could work
at the lab whenever they wanted or needed to. This greatly
increased productivity, but at the cost of privacy and secrecy.
By sharing the lab time, both teams were often working at the
same time and therefore each team knew what the other team
was working on. Therefore, the red team often knew what
vulnerabilities the blue team had not yet secured against and the
blue team often knew what attacks the red team was planning.
While in some ways this speed up the experiment as the teams
were cooperating, it also might have added a certain level of
dependence to the experiment. Since the red team was focused
on exploiting the vulnerabilities that we knew had not been
taken care of, it is possible that we focused less on coming up
with new and unusual ideas that were not related to what the
blue team was doing.

VI. FUTURE WORK
In the future, we hope to work with more of the

provided devices to help gain an understanding of how our
current attack strategies could be used on them. We were given
a total of 13 devices but were only able to perform attacks on
four of them in the allotted time. A large portion of the

remaining nine devices were IoT devices, so the de-
authentication attacks we performed could be performed to
disable or even gain full control of the devices. We are currently
looking into deploying the Mirai botnet on our IoT devices to
monitor how it spreads and affects the devices.

The Mirai botnet source code is publicly available on
GitHub along with step by step instructions to set it up. The
problem is these instructions only show how to set up the fully-
fledged botnet which would probably break out of the lab and
attack other devices if we tried to run it in our environment.
Instead of risking this, we decided it would be safer to modify
the source code and only run the brute-force attack on our
devices. This would prove that these devices are vulnerable to
Mirai without risking trouble with the IT department and/or the
law. The source code is poorly documented, and we were
unable to figure out how to modify it given our time restrictions.
We are also concerned that the SYN scan used by Mirai to find
ports to attack will be blocked by ITS. Despite this, Mirai will
be a good attack to try to perform in future work.

Furthermore, we only focused on technical
vulnerabilities of IoT devices and the blue team consisted of all
tech savvy people. No social engineering attacks were
performed, but social engineering attacks are very powerful,
and they normally bypass security layers completely. In the
future, we would like to demonstrate a number of different
social engineering type attacks so that users can be aware of
those attacks in their daily lives so that they can better protect
themselves.

VII. CONCLUSION
“Internet of things” is a common phrase in today’s

world. The internet of things, or IoT, comprises of a series of
electronic devices that are connected together and to the
internet. They allow unprecedented data collection of our
world. These devices bring many advantages to our everyday
lives, but they also come with many security concerns,
especially in terms of privacy. Currently, if a user chooses to
use an IoT device then they must also accept all the risks that
come with the convenience it provides. The risks associated
with IoT devices are many and vast, but there are very few
security measures in place to help circumvent those risks. To
help showcase just how dangerous these devices can be, this
paper presents some attacks performed by novices to find and
highlight the vulnerabilities in smart home systems. This work
attempts to provide awareness of these vulnerabilities in the
hope that in the future, better security measures will be
implemented that will protect the privacy of users.

REFERENCES

[1] Z. Zhang, M. C. Y. Cho, C. Wang, C. Hsu, C. Chen and S. Shieh, "IoT
Security: Ongoing Challenges and Research Opportunities," 2014 IEEE
7th International Conference on Service-Oriented Computing and
Applications, Matsue, 2014, pp. 230-234.

[2] R. Mahmoud, T. Yousuf, F. Aloul and I. Zualkernan, "Internet of things
(IoT) security: Current status, challenges and prospective measures,"

2015 10th International Conference for Internet Technology and Secured
Transactions (ICITST), London, 2015, pp. 336-341.

[3] C. Lee, L. Zappaterra, Kwanghee Choi and Hyeong-Ah Choi, "Securing
smart home: Technologies, security challenges, and security
requirements," 2014 IEEE Conference on Communications and Network
Security, San Francisco, CA, 2014, pp. 67-72.

[4] A. Dorri, S. S. Kanhere, R. Jurdak and P. Gauravaram, "Blockchain for
IoT security and privacy: The case study of a smart home," 2017 IEEE
International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), Kona, HI, 2017, pp. 618-623.

[5] Kang, W.M., Moon, S.Y. & Park, J.H. An enhanced security framework
for home appliances in smart home. Hum. Cent. Comput. Inf. Sci. 7, 6
(2017) doi:10.1186/s13673-017-0087-4

[6] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J., Durumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M.,
Kumar, D., Lever, C., Ma, Z., Mason, J., Menscher, D., Seaman, C.,
Sullivan, N., Thomas, K., & Zhou, Y. (2017). Understanding the Mirai
Botnet. USENIX Security Symposium.

[7] Mateti, Prabhaker (2005), Hacking Techniques in Wireless Networks:
Forged Deauthentication, Department of Computer Science and
Engineering, Wright State University.

[8] Bellardo, John; Savage, Stefan (2003-05-16), "802.11 Denial-of-Service
Attacks: Real Vulnerabilities and Practical Solutions", Proceedings of the
USENIX Security Symposium, Aug 2003

