

Analyzing the Security of Companion Apps of
Popular Smart Home Devices

Bradley Helliwell
Department of Computer

Science
Colorado School of Mines

Golden, CO, USA
bhelliwell@mymail.mines.ed

u

Mengxia Ren
Department of Computer

Science
Colorado School of Mines

Golden, CO, USA
mengxiaren@mymail.mines.e

du

Ty Christensen
Department of Computer

Science
Colorado School of Mines

Golden, CO, USA
tchristensen@mymail.mines.e

du

Thien Ngo Le
Department of Computer

Science
Colorado School of Mines

Golden, CO, USA
thienngole@mymail.mines.ed

u

Abstract— An IoT device’s cryptographic strength is only
as strong as its weakest endpoint [1]. This gives rise to
concern about the cryptographic strength of the mobile
applications associated with IoT devices. This project aims
to use reverse engineering tools, like the NSA’s Ghidra, to
reverse engineer the companion applications of smart
home devices and reveal information about how they
communicate with their corresponding device. We then
identify and categorize cryptographic strength and
weakness that are introduced by the companion mobile
applications of these devices.

Keywords—IoT; internet of things; smart home devices;
cryptography; vulnerabilities;

I. INTRODUCTION

There are lots of communication protocols between
smartphones and computers, such as GPS, GSM, TCP, UDP,
SSL, TLS, HTTP. These protocols usually use some
cryptographic algorithms to encrypt their sensitive information.
However, there is too much attention on analyzing smartphones
and computers. Since IoT devices have also been an important
part of the Internet. IoT devices are becoming increasingly
popular by the day; Research companies have predicted that
IoT will grow to 26 billion units in 2020 [2]. It is important to
analyze communication protocols used by IoT devices.

Internet of Things, or IoT refers to a system of

internet-connected devices that have the ability to exchange
data. These devices provide us with many advantages, such as
having smart homes and smart cities. However, there are many
challenges and issues for these devices, such as power
consumption of devices, limited battery, memory space,
performance cost, and security in the Information
Communication Technology network [6]. There are two basic
types of communication, one is based on HTTP and the other
one is based on events. HTTP-based communication is usually
implemented through TCP, while event-based communication
is based on UDP, such as DDS, CoAP and

MQTT. Furthermore, there are some security protocols such as
DTLS, TCG and SMACK in IoT. How do these protocols
transmit data? Do they encrypt transmitted data and is that
encryption secure? These are key problems for security of IoT
devices and also the motivation behind our project.

Our goal is to analyze these protocols to see what
encryption they use and if the encryption can be cracked and
offer some counter measurements.

II. APPROACH

A. Key Idea

Since the IoT lab cannot be used, we cannot set up an IoT
virtual environment and we cannot capture communication
packets between IoT devices directly either. Instead, we will
analyze these IoT mobile apps to see what protocols they use
to communicate with IoT devices and how these apps deal
with communication packets sent from IoT devices. By doing
this, we can know how these IoT protocols work and whether
their encryptions are secure.

B. Methodologies

First, we collected mobile application packages of the
devices we want to analyst (Kasa Smart, August Home, Nest
App, Ring). We used APKPure to collect these packages; it is
one of the leading websites in the smartphone software industry
that allows its users to download android app packages.

Next we reverse engineer collected apps for code

analysis. Most of the time, the app's source codes are
obfuscated by the developer before it is deployed. The purpose
of obfuscation is to make something harder to understand,
usually for the purposes of making it more difficult to attack
or to copy.

Figure 1

Figure 1 shows how obfuscation could make it harder to
understand or replicate a given source code if it is reverse
engineered. All the classes' names in figure 3.1 are labeled as a,
b, c so it is meaningless to any external entities. However,
obfuscation is not a strong control such as employed
encryption, it is more like an obstacle. Obfuscation, like
encoding, can often be reversed by using the same technique
that obfuscated it. So, it is important to choose the right tool to
decompile the android application package for code analysis
because the obfuscation may cause some difficulties for the
analysis process. We tried several different tools for the
decompiling task. We observed that each tool has its own pros
and cons. Tools like Ghidra work very well on decompiling
apps that are written in C or C++ but not really good with Java
and Python apps. On the other hand, APKtool works well for
Java apps but not C or C++. But APKtool decompiles the .apk
file into smali source code which is not a human readable
format, other tools like Dex2jar and JD-GUI need to be used to
convert smali files to java files to make it easier for analysis.
From our experience, Ghidra works best for decompiling apps
written in C or C++, the combination of APKtool + Dex2jar +
JD-GUI work best for java and python apps.

Lastly, we performed code analysis. During the code

analysis, we will find parts that deal with communication with
IoT devices. If we find what encryption algorithm they used to
encrypt/decrypt data before they transmit a message, we will
research that encryption algorithm for known vulnerabilities. If
we find what protocol they used to transmit data, we will figure
out what encryption algorithm is used for the protocol. We will
then analyze known vulnerabilities for that encryption
algorithm. Our group analyzed the following IoT devices’
mobile applications. Kasa Smart Plug, NEST Dropcam, August
Smart Lock and Ring Doorbell. The Kasa Smart Plug is a smart
in-wall outlet whose application allows the user to control
power output to the outlets. The NEST Dropcam is a security
camera that uses motion detection to alert via the NEST app.
The August Smart Lock allows the user to lock and unlock a
door as well as grant others permission to lock and unlock that
door via the app. The Ring Doorbell functions as both a security
camera and communication device. Through its app, the user
can talk to someone standing at their doorway and alerts the
user if motion is detected in front of their doorway.

For each of these apps we will be judging their
security. If an app breaks one of the following six rules they
simply cannot be secure [4].

Rule 1: Do not use ECB mode for encryption.
Rule 2: Do not use a non-random IV for CBC encryption.
Rule 3: Do not use constant encryption keys.
Rule 4: Do not use constant salts for PBE.
Rule 5: Do not use fewer than 1,000 iterations for PBE.
Rule 6: Do not use static seeds to seed SecureRandom().

Breaking one of these rules creates a big security

vulnerability. This is typically because they go against best
practice and create an issue that a specific encryption mode has.
For example, with ECB unless messages are very small and
unique there will be an issue. This is because with ECB if the
plaintext is identical it will encrypt to identical cipher text [4].
Similar specific issues occur with PBE and CBC as well. Using
constant encryption keys is a bad idea in general as the key
needs to remain private and unknown. Using static seeds for
something that is supposed to be random creates an issue
because that random item is no longer truly random. For these
reasons if any of these six rules are broken, the encryption for
the app is deemed insecure [4].

In addition to the rules listed above, we will also take

other factors into consideration including how well sensitive
data is stored, programming issues, network communication
and other known vulnerabilities. Evaluation of these general
cyber security practices will be used in conjunction with the
rules listed above to evaluate these applications. So, an
application might have strong cryptographic practices, but
cannot be considered secure due to other vulnerabilities
introduced in the application. Specifically, we will use the
guidelines outlined by the Your Things Project which scores
IoT devices on their overall cyber security strength [5].

III. APPLICATION ANALYSIS

A. Kasa Smart for Kasa Smart Plug

Kasa Smart is a mobile application developed by TP-

Link company. It allows users to add, configure, and control
users’ connected TP-Link devices from anywhere. For
example, you can use Kasa Smart app to schedule your Kasa
Smart plug to turn on or off according to your schedule. we used
APKtool, Dex and JD-GUI to compile this application.

Based on what we observed, Kasa Smart has their own

encryption function that uses DES encryption algorithm. It uses
HTTPS and CA pinning protocol for cloud communication.
Unfortunately, the initial vector is hardcoded in the encryption
function which makes the encrypted message breakable. We
also found that the app has a sort of wifi scanning function that
looks for the wifi network that has the same name as the
network the smart plug is connecting to. So we suspect that the
app and the smart plug have local communication. After a quick
search, we confirmed that there is local communication

between the app hosting device and the smart plug. According
to the related work done by a security team, SoftScheck
[7], Kasa Smart also supports local communication using
TCP protocol on port 9999. But there is no authentication
implemented on the local communication. This means that
everyone on the same network with Kasa devices could be able
to control the devices. The team also found that the
encrypt/decrypt key (171) is also hardcoded in the device’s
firmware.

Figure 2

Figure 2 illustrates all the communication of the Kasa Smart
app and its smart plug.

B. NEST for NEST Drop Cam

The NEST app is a hub for all the IoT devices Google

Nest offers. The app will allow you to control items such as
your thermostat, alarm system, and indoor/outdoor dropcams.
Through the app you can change the temperature of your home,
arm and disarm your security system, and monitor video from
your drop cams with a feature that allows you to talk through
them as well. The app holds up to 30 days of video history and
can send frequent face alerts.

Overall, the app’s security is very strong. It uses

multiple encryption types including 128-bit and 256-bit AES
typically using CBC or GCM modes. These security modes are
secure because brute force attacks are theoretically impossible
due to the amount of time needed to crack the key. GCM is
usually more secure than CBC but also more expensive so it is
important to pair it with CBC to be the most secure. The app
uses 2048-bit RSA private keys for its key exchange, which is
the community standard. The only possible vulnerability that
was discovered is the fact that some of their passwords and
router information may be stored in plaintext. This includes the
network password as it is needed for the IoT devices to work.

C. August Home for August Smart Lock

The August Smart Lock is used to gain more control

over who is able to lock or unlock a door. Some of the features
offered by the mobile companion application include allowing
a user to unlock and lock their door remotely, granting access

to others during a specific timeframe and closely monitoring
who has access to their home. Ghidra was used to decompile
this application because its source code was written in C.
The August Smart Home app generally has fairly good
encryption techniques and did not violate any of the rules or
best practices this project sought out to evaluate. However,
when communicating with the August IoT platform, the
mobile app uses RC4 encryption. This raises concerns because
there are known vulnerabilities regarding statistical biases in
the RC4 cipher. The attack laid out in the paper All Your
Biases Belong To Us:Breaking RC4 in WPA-TKIP and TLS
shows that about 9227ciphertexts are needed in order to
perform this attack [3]. This shows that, the way August has
implemented their encryption, an attacker could not get that
many ciphertext. So, their use of RC4 seems secure but a more
secure cipher like AES would provide more security.

D. Ring for Ring Doorbell

It is used to help people monitor situations around

their home. When people ring your doorbell and you are not at
home, you can audio with them remotely through this ring app.
This means the only IoT device this application interacts with
is a smart ring bell. We used APKtool, Dex and JD-GUI to
compile this application.

Communication between Ring App and IoT devices.

After decompiling the app, we found that this app contained
com.amazon.identity.auth.device package and used http/https
protocol to login in amazon to do device identity authentication.
This means the app does not directly communicate with the
smart ring bell. Instead, it communicates with smart devices
through an IoT platform which is designed by Amazon, called
AWS IoT platform. This IoT platform allows internet-
connected devices to connect to the AWS Cloud, then the
applications connected in this cloud platform can interact with
these IoT devices which also connect in this platform.

Data encryption. we found that this app will encrypt

data source and data before it sends them out. Then encryption
is a combination of AES algorithm, CBC cipher mode and
PKCS7PADDING.The evidence we found in decompiled code
is shown as Figure 3.

Figure 3

AES is a symmetric encryption algorithm and in
practice, the app used a 128-bit key to encrypt data. The
AES128 algorithm is secure enough to protect data, since the
brute-force attack needs thousands of years to crack it.

In CBC cipher mode, before being encrypted, a plaintext
block will be XORed with the previous ciphertext block. By

doing so, each ciphertext block will be impacted by all
plaintext blocks processed up to it. An initialization vector is
used in the first block. One of the security requirements for

CBC is initialization vector IV should be generated randomly
otherwise with a predictable IV, it will be possibly cracked by
chosen plain text. In decompiled code, we found that the app
used SecureRandom class to generate IV for CBC encryption.
The evidence we found is shown as Figure 4. Without a static
seed given, SecureRandom class will generate IV randomly.
This usage satisfies Rule 2: Do not use a non-random IV for
CBC encryption and Rule 6: Do not use static seeds to seed

SecureRandom(). We can say the data encryption in this app is
secure.

Figure 4

Since the app did not communicate with the IoT

device, we can only get very little information from decompiled
code of the application. For obtaining a more accurate analysis,
we also read the introduction and related documents of the
AWS IoT platform.

Based on codes and documents, we learned that one

common protocol used between IoT devices and AWS IoT
platform is MQTT. MQTT is an insecure protocol and it does
not require devices to authenticate to servers. Thus,
communication between a device and AWS IoT is protected
through X.509 certificates. X.509 is a standard defining the
format of public key certificates.
We found that in the app, the device identity authentication is
completed based on a combination of AES algorithm, ECB

cipher mode and PKCS5PADDING. We assume that for IoT
devices, they also use the scheme for identity authentication.

The evidence we found is shown as Figure 5.

Figure 5

In ECB mode, the message will be divided into several

blocks, and each block will be encrypted separately. This
method lacks diffusion since there is no feedback. Furthermore,
in this mode, same plaintext blocks will be encrypted as same
ciphertext blocks. ECB is not able to hide data patterns well.

The usage of ECB violates Rule 1: Do not use ECB

mode for encryption. It is not as secure as CBC. However,

based on the app analysis, ECB is not used to encrypt data,
instead it is used in identity authentication to create a cipher key
for digital signature. AES128 is secure enough to protect data
and it is hard to be cracked by brute force attack. Therefore, we
think this usage of ECB is also secure.

IV. LIMITATIONS

Our goal is to learn the communications in IoT
devices. However, analysis only based on decompiled code of
IoT applications is incomplete. And we cannot verify whether
our analysis reflects the real situation of communications
between IoT devices and applications.

Sometimes it is difficult to analyze how it

communicates with IOT devices since the decompiled code is
not logical. For example, in the decompiled code of Ring app,
there is a function A(). If you cannot understand what this
function is used for from the code in its body, you cannot have
any idea from its function name either.

The way of communications between IoT devices and

the IoT application will also impact the analysis results. If the
IoT application communicates with IoT devices directly, for
example, Ring Doorbell app, we can obtain the protocols or
encryption algorithms used in IoT devices, since the application
and the device will use the same rules during their
communications. However, when the application and IoT
devices communicate through an IOT platform, it is difficult to
know what the real case of communication between IOT
platform and IOT devices is. We can only track the real
situation of communications between applications and the IoT
platform and can only assume the communications between IoT
devices and the IoT platform.

Since we only can decompile and analyze manually,

we only analyzed 5 IoT applications. The security issues of
these IoT devices and IoT applications we found is only a lower
bound. There must be more security problems in the IoT
environment.

V. FUTURE WORK

In the future, we will try to find some tools to help us
decompile the apk and target encryption snippets in
decompiled code automatically. Thus, we can analyze more
IoT applications. Based on a bigger dataset, it is possible for
us to find more security issues in IoT.

VI. CONCLUSION

In this project, we aim to find some security issues of
encryption algorithms used in IoT protocols and IoT devices by
analyzing IoT applications. We decompiled applications by
some decompiled tools, such as apktool, JD-GUI and dex. After
obtaining decompiled code, we searched the keywords related

to encryption in decompiled files, such as “AES”, ”encryt”,
“crypto” and then analyzed these encryption related snippets.

From our analysis, we found that some applications

did not encrypt their data and send it directly. Some
applications used outdated encryption algorithms, e.g. RC4, to
encrypt their data. While in some other applications, they used
insecure encryption mode, e.g. ECB, however, they combined
it with a secure enough encryption algorithm, e.g. AES128.

For improving the security of communications in IoT,

we recommend that developers should encrypt their data before
sending it out with a secure encryption algorithm or a secure
cipher mode. When they implement the cipher mode, they need
to keep the six rules we listed in mind.

REFERENCES
[1] ManagementMania, “Weakest Link Principle,” ManagementMania.com,

17-Feb-2018. [Online]. Available:
https://managementmania.com/en/weakest-link-principle. [Accessed: 12-
Feb-2020].

[2] How Big Is the Internet Of Things? How Big Will It Get?
https://paxtechnica.org/?page_id=738

[3] K. Sha, W. Wei, T. A. Yang, Z. Wang, and W. Shi, “On security
challenges and open issues in Internet of Things,” Future Generation
Computer Systems, 07-Feb-2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17324883.
[Accessed: 13-Feb-2020]

[4] Egele, Manuel, David Brumley, Yanick Fratantonio, and Christopher
Kruegel. “An Empirical Study of Cryptographic Misuse in Android
Applications.” Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security - CCS 13, 2013.
https://doi.org/10.1145/2508859.2516693.

[5] “YourThings Scorecard,” YourThings Scorecard. [Online]. Available:
https://yourthings.info/. [Accessed: 31-Mar-2020].

[6] Singh, Saurabh & Sharma, Pradip & Moon, Seo & Park, Jong. (2017).
Advanced lightweight encryption algorithms for IoT devices: survey,
challenges and solutions. Journal of Ambient Intelligence and Humanized
Computing. 1-18. 10.1007/s12652-017-0494-4.
[7] “Reverse Engineering the TP-Link HS110,”
https://www.softscheck.com/en/reverse-engineering-tp-link-hs110/,
SoftScheck GMBH, 2018.

